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Abstract 
 
Recently, a robust method of determining the dominance ratio (Coarse Mesh 

Method) was developed for iterated source Monte Carlo (MC) methods.  The objective of 
this method was to correctly evaluate the dominance ratio using time series techniques in 
a completely automated fashion, without requiring specific knowledge of transport theory 
or time series analysis from the user.  In this work, CMM was integrated into MCNP and 
tested against several benchmarked problems.  Since MCNP is a production code, there 
is a strong desire to reduce memory usage and improve algorithm efficiency with any 
new methods introduced.  With these constraints in mind, CMM was introduced using a 
two-bin scheme.  CMM performed very well (due to the symmetric nature of most 
problems), though a bin scheme matching the problem dimensions would be more 
advantageous to ensure that the largest eigenmode of the noise propagation matrix does 
not cancel out for any particular problem.  The difficulties with implementing this larger 
bin scheme will be discussed, followed by the results of CMM against several test 
problems in MCNP. 

 

 

1 Introduction 
In the past, calculating dominant eigenvalues of criticality problems has generally 

been left to deterministic power iteration methods.  Performing these calculations using 

Monte Carlo methods usually involved calculating the fission matrix, which is generally 

regarded as an inefficient method.  It requires a very fine bin overlaying the problem in 

which the fission contributions from every other bin in the system are stored.  Improving 

the accuracy of the calculation using the fission matrix method thus meant increasing the 

number of bins n, which in turn meant storing n2
 values. 

Recently, a robust method of determining the dominance ratio (i.e. the ratio of the 

first to fundamental eigenmode of the fission source distribution) was developed for 

iterated source Monte Carlo (MC) methods [1].  This method was independent of bin 

structure and used time series analysis of a particular projection of the fission source 

vector to compute DR, which was a significant improvement.  However, this method 

relied on an autoregressive moving average (ARMA(2,1)) fit, which could be 

complicated and require fine tuning from the user. 

An improvement to this method was sought that retained the strengths of using time 

series analysis, but that did not rely on the complicated ARMA fitting.  This became the 

Coarse Mesh Method (CMM) [2].  This method was much the same as the previous, but 



improved on the particular projection vector used.  It was found that when using a certain 

projection vector, DR could be computed reliably using a simple autoregressive order one 

(AR(1)) fitting.  Using this method, the calculation of DR in continuous Monte Carlo 

calculations became viable. 

In this work, CMM was integrated into the MCNP Monte Carlo production code and 

tested against several benchmark problems where DR was known by other means.  A 

number of factors had to be taken into consideration when integrating this into MCNP’s 

framework.  First, since DR was computed on-the-fly instead of by a separate post 

processing program, the fission sources for every bin and every cycle could not be stored.  

At most, the fission source values could only be saved for a small number of cycles (three 

or less) to save on memory and processing time.  Second, MCNP could not rely on the 

commercial libraries of functions (such as IMSL) for routines to solve for 

eigenvalues/vectors of non-symmetric matrices or invert matrices.  New routines had to 

be written to perform these functions. 

A review of CMM theory is presented in the first section.  The actual implementation 

of CMM into MCNP is described next, including the advantages and limitations of this 

particular implementation.  This is followed by the results of testing CMM against 

several benchmark problems.  Lastly, a discussion is given for extending this method to a 

Fine Mesh Method (FMM), which could potentially be used to generate other higher 

order ratios, beyond DR. 

 

2 Coarse Mesh Method 

2.1 Theory 

2.1.1 Regression Anal ysis of Time  Series  

Since the source distribution )(ö rS
r

 is a stochastic realization, it can be written as  

 

 ( ) ( )ˆ ˆ( ) ( ) ( ), 0,m mS r NS r Ne r m! + "
r r r

 (1) 

 

after simulating the mth
 stationary cycle in an MC iterated source calculation, where N is 

the number of particles (neutrons) per cycle, )(rS
r

is the ensemble average of the source 

fluctuation (i.e. ( )ö( ) [ ( )]mS r E S r N=
r r

 with []!E  denoting expectation), and 
( )ˆ ( )me r

r
 is the 

fluctuating part of the source distribution (
( )ö[ ( )] 0m

E e r =
r

).  The hat above the symbols is used 

to imply a stochastic realization and the N terms are scaling terms used to clarify the 

asymptotic behavior of the integrals of individual terms as N ! " . 

 

The fluctuating part of the source distribution is governed by a linear Markov 

process 
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where the following relationships hold: 
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The operator 0A  introduced in Eq. (2) is defined via the operation on function )(rf
r

 as 
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with the requirement that 
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This operator is also known as the noise propagation matrix and is key to relating how the error is 

propagated from cycle-to-cycle.  It is from 
0

A  that the particular projection vector necessary for 

CMM will be obtained. 

From the definition of the operator in Eq. (4), the following relationships can be easily 

derived through substitution: 

 

 0 0( ) 0,     1,i S r i= !A
r

 (6) 

 

 

0

0

0

0

( ) ( )      when ( ) 0

( ) ,    1,  1

( )                     when ( ) 0

i

j
j j

i
j i

j
j j

k
S r S r S r dr

k
S r i j

k
S r S r dr

k

!" #
$ %& ' () * + ,&- ./ = 0 01

" #&
=) *&

- .2

3

3
A

r r r

r

r r
. (7) 

 

If we consider a discrete form of 0A , Eq. (7) would allow us to assume that the eigenvalues of 

0
A  approach ,,2,1,

0
K=ikk

i
if the number of bins were large and each bin was sufficiently 

fine spatially.  Of course, this implies that DR could be solved for directly from 
0

A  using matrix 

solvers in mathematics libraries if it were statistically computed.  This would be computationally 

prohibitive, however, due to the large number of bins needed to sufficiently reduce the 

discretization error.  For this reason, we use the time series approach, guided by the eigenvectors 

of 
0

A , so that the DR calculation is free of discretization error.  The exact mechanics of 

the projection process and time series analysis are described next. 
 

2.1.2 Projection Proce ss 
 

Consider a discrete form of Eqs. (2) and (3): 
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where )(m
e
r

 and 
)(m

!
r

 are 1!p  column vectors, 0A  is the corresponding pp!  matrix for a 

discrete version of Eq. (4), !  signifies an outer product, and p  is the number of bins.  By 

multiplying Eq. (8) by 
( 1)me !r

 from the right and taking the outer product, we can obtain 
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Taking the expectation of Eq. (10) and applying Eq. (9) results in  
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Defining  
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the matrix 
0

A  can be expressed and solved for as 
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The eigenvalue problem of 
0
A  is 
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Theoretically, the noise propagation matrix 
0

A  should be positive definite, ensuring that all 

eigenvalues are real and positive.  In reality, statistical fluctuations can often result in 0A  having 

eigenvectors with complex parts.  As the number of particles per cycle and number of cycles 

increase, however, the statistical fluctuations will decrease in magnitude, leading to smaller 

complex pieces.  Since the complex parts are generally small, they are usually just ignored in this 

method. 

Eigenvectors of the matrix 
0

TA  are used in the projection process to compute DR.  The 

transpose of 
0
A  is used to ensure that all of the eigenvectors are independent.  The 



eigenvector
1
d
r

 corresponding to the dominance ratio is selected as a projection vector and applied 

to Eq. (8), taking the inner product, which is signified by ,! ! : 
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Defining a scalar time series as  
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and a scalar noise component as 
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we can rewrite Eq. (16) in the form of an autoregressive (AR) process of order one 

[AR(1)] with the dominance ratio 1!  as the autocorrelation coefficient. 
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y y z!
"= +  (19) 

 

This is a remarkable result for several reasons.  First, the bin dependence for the 

calculation of DR is removed by the time series process.  The calculation of 0A  still 

requires a certain binning scheme, but (as will be shown) a coarse mesh works well.  

Second, an AR(1) process is the most simple type of time series.  The coefficient is 

guaranteed to be less than one and is straightforward to calculate.   

To solve for the autocorrelation coefficient (DR), the autocovariance function is 

formed by multiplying Eq. (19) by ( 1) ,   1my m! >  and taking the expectation: 
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The time series ( )my  at a particular time m  is only dependent on the noise components 

from the past values, not the future, so ( 1) ( ) 0,m mE y !"# $ =% & .  Eq. (9) with Eq. (18) yield 

 

 

( )

( 1) ( 2) ( 1) ( 2)

1 1

0

, 0,     1 2,

m

m m m m

E z

E z z b E b m m! !

" #=$ %

" # " #= & = >$ % $ %
r rr r  (21) 

 

guaranteeing that Eq. (20) follows similarly and can be rewritten as 
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where 
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The dominance ratio 1!  can then be solved for as 
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2.1.3 Coarse -Mesh Pro jection  
 

We next develop the idea of the coarse-mesh projection based on the relation between 

source binning and the first-mode eigenfunction ( )1
S r

r
.  Previous work has shown [3] that 

if the complete cancellation of ( )1
S r

r
 occurs at a bin, the fluctuation mode associated with 

1 0k k  disappears for the source at the bin.  The goal then is to find a binning scheme of 

general nature that always prevents the complete cancellation of ( )1
S r

r
 from occurring.   

The fundamental-mode eigenfunction ( )0S r
r

is everywhere non-negative, i.e. does not 

change sign.  The first-mode eigenfunction ( )1
S r

r
 is of anti-symmetric nature, i.e. 

changes sign once if simply put.  The simplest way to ensure that ( )1S r
r

 never completely 

cancels out is to put a two-bin mesh along each possible Cartesian direction.  Two bins 

are sufficient for a one-dimensional problem, four bins for two-dimensions, etc.  Figure 1 

illustrates this in a two-dimensional case.  This bin arrangement even works for problems 

with diagonal symmetry, as shown in Type 2 of the figure.  Of course, more bins could be 

used along each direction, but this would only add to the complexity and storage 

requirements of the problem. 

 



Figure 1: Four Cell Binning & the Dominant Eigenmodes
Next to Fundamental Eigenmode in Two-Dimensional Problems
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2.2 Implementation into MCNP 

 

The CMM algorithm implemented into MCNP was written primarily with memory 

conservation in mind.  There was a significant obstacle to this, however.   Since the 

projection vector is the eigenvalue of 0A , it cannot be computed until after the run is 

completed (when 
0
A  is formed).  According to Eq. 16, however, the projection vector 

must be applied to the fission source vector every cycle.  It would be completely 

counterproductive to save the fission source for every bin and every cycle, just to apply 

the projection vector subsequently.  Instead, the terms in Eq. 19 are rearranged so that 

only the necessary terms are saved each cycle.  Writing Eq. 19 in terms of the definition 

from Eq. 17 yields 
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The individual terms can be expanded as 
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In this way, the outer product of the source fluctuation term and the projection vector can 

be computed separately and combined after the run is completed.  The only values that 

need to be stored throughout the run are the outer product of the source fluctuation, which 

is a p p!  matrix (p being the number of bins).  This p2
 storage requirement is similar to 

that of the fission matrix method, the difference being that CMM actually prefers a 

coarser mesh than a finer one. 

The error inherent in the autocorrelation coefficient calculation is measured by a 

technique described by Box and Jenkins [4].  The variance of an estimated 

autocorrelation coefficient of a stationary Normal process is given as  
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For autocorrelation functions that damp out exponentially, such as in the AR(k) case 

where ( ),  1 1
k

k! " "= # < < , this becomes 
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In particular, for an AR(1) case, this reduces to 

 

 
  
var r

1
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1
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This is the expression implemented into MCNP for estimating the variance of the 

autocorrelation coefficient, i.e. DR. 

It is important to note that the current implementation of CMM can only find 

coefficients for an AR(1) fitting.  To expand the calculation to fitting orders greater than 

one, MCNP would have to save the fission data from more cycles, thus increasing the 

storage requirement.  Specifically, to perform an AR(k) fit of the fission source MCNP 

must save data from k+1 cycles, thus increasing the storage requirement to pk+1
.  While 

this is not a concern for estimating DR using CMM (since it only requires an order one 

fit), it might become a problem if this work is extended to compute higher order 

eigenvalue ratios. 

The other difficulty encountered when implementing CMM into MCNP was the need 

for several matrix manipulation routines, namely a matrix inverter and an 

eigenvalue/vector solver.  While these are matrix operations are fairly commonplace, the 

computer routines necessary to perform them are not trivial, especially when dealing with 

non-symmetric matrices with complex eigenvalues/vectors. 

 



3 Results  
Once implemented, CMM was benchmarked against several problems for validation.  

The first problem (Figure 2) is a two-dimensional inhomogeneous problem with a DR of 

0.9993 0.0004  (2 )!±  taken from previous work [XX].  Figure 3 shows the DRs 

computed with different numbers of cycles and particles/cycle.  Figure 4 shows the DRs 

computed using different bin arrangements.  All results include a 95% confidence 

interval around the estimate. 

 

 
Figure 2: Description of Problem 1 

 

Figure 3 shows the DR calculation using a 2 2 2! !  mesh (two bins in the x, y, z 

directions, respectively) on Problem 1 using 10,000 particles per cycle and a varying 

number of cycles.  In all cases, the 95% CI contains the benchmark DR.  It is interesting 

to note that the error bounds actually grow larger when using 2,000 cycles as opposed to 

1,000 cycles.  This is because of the particular error formula used.  Problems with DRs 

near unity will have a very small variance, especially when a particular estimate 

fluctuates close to unity. 

Figure  4 shows DR for Problem 1 using varying mesh sizes, with 10,000 particles 

per cycle and 500 cycles.  Again, in all cases the 95% CI contains the benchmark DR.  

The values and variances are all roughly the same, which is expected.  Even when a  

3 3 2! !  mesh is reduced to 2 2 2! ! , DR is computed correctly.  This shows that even 

when there are small cancellation effects caused by an odd bin combination, CMM is still 

able to accurately determine DR from the remaining portion of the eigenmode projection 

vector.  This is important to ensuring the method works ‘black-box’ since users will be 

able to setup their own mesh.  It is only when the integral of the eigenmode completely 
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cancels out over the domain that CMM would not be able to extract DR, and this should 

not occur with the 2 2 2! !  scheme introduced. 
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Figure 3: Dominance Ratio of Problem 1 using varying a number of cycles 
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Figure 4: Dominance Ratio of Problem 1 using varying bin schemes 

 

 

The second problem is a one-dimensional criticality safety problem with fissionable 

material at both ends of slab, separated by scattering and absorbing material.  The regions 



are almost completely decoupled, raising DR significantly and skewing the shapes of the 

eigenmodes.  This particular problem has two variations, which are labeled 2-1 and 2-2 in 

Figure 5.  The only difference between the two variations is that 2-2 is slightly 

asymmetric, the right most material being 1.01 cm thick. 

 

 

 
Figure 5: Description of Problem 2-1 and 2-2 

 

 

Figures 6 & 8 show the DR calculation for Problems 2-1 and 2-2, respectively, using 

a 2 2 2! !  mesh using 10,000 particles per cycle and a varying number of cycles.  The 

benchmark is contained within all 95% CIs.  Figures 7 & 9 show DR for Problems 2-1 

and 2-2 using varying mesh sizes with 10,000 particles per cycle and 500 cycles.  The 

benchmark is contained within the 95% CI in all cases except 2,000 cycles, though it is 

within the 99% CI ( )3! .   
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Figure 6: Dominance Ratio of Problem 2-1 using a varying number of cycles 
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Figure 7: Dominance Ratio of Problem 2-1 using varying bin schemes 
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Figure 8: Dominance Ratio of Problem 2-2 using a varying number of cycles 
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Figure 9: Dominance Ratio of Problem 2-2 using varying bin schemes 

 

 



4 Conclusions 
 

The implementation of CMM into MCNP was successful using a 2 2 2! !  bin scheme.  

The coarse mesh utilized by this method is preferred to methods that require a fine mesh 

because of memory storage concerns and easier matrix manipulations.  The results are 

positive for the problems tested, including criticality safety problems with distorted 

fission source distributions.  From this point, a natural extension of this work would be to 

calculate the higher eigenmode ratios.  This might require a finer mesh (depending on the 

eigenvalue ratio desired) as well as the capability for higher autoregressive order fittings.
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